Introduction to Reinforcement Learning



Presentation: Baekryun Seong

2024.05.20

# Table of Contents

Value Function

Deep Reinforcement Learning Algorithms

Deep Learning for Reinforcement Learning

Reinforcement Learning and Supervised Learning

In the last presentation, we studied the concept of value function:

**State Value Function**  $v^{\pi}$  is an expected return of a state.

$$v^{\pi}(s) = \mathbb{E}_{a \sim \pi}[G_t|s] = \mathbb{E}_{a \sim \pi}[R_{t+1} + \gamma G_{t+1}|s]$$

Action Value Function  $q^{\pi}$  is an expected return about an action.

$$q^{\pi}(s, a) = \mathbb{E}_{a \sim \pi}[G_t | s, a] = \mathbb{E}_{a \sim \pi}[R_{t+1} + \gamma G_{t+1} | s, a]$$

So, why should we define it?

### Ch 1.3 Recall: The Reinforcement Learning Control Loop

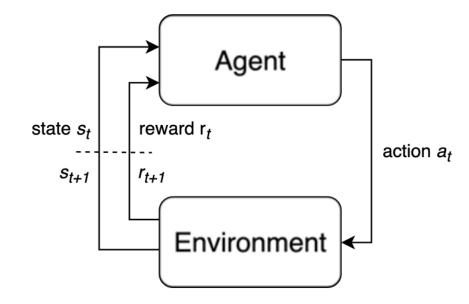
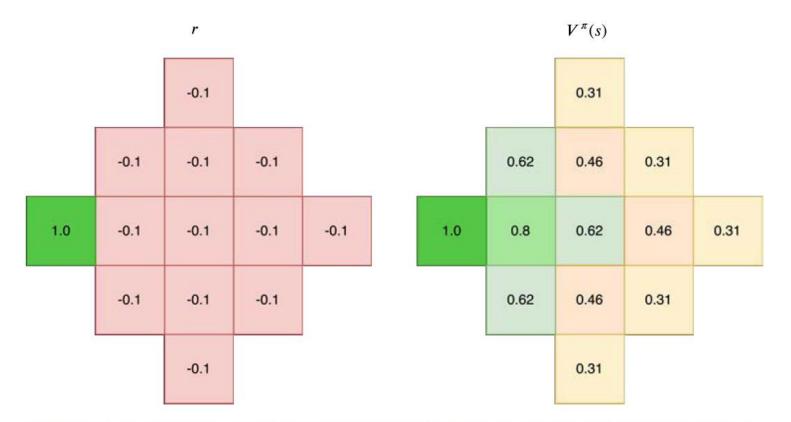


Figure 1.2 The reinforcement learning control loop\_

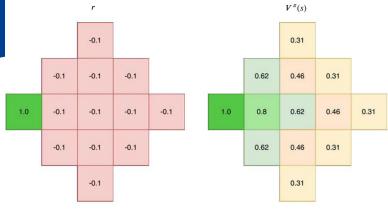
- RL Problems have an objective, which is the sum of rewards received by an agent.
- An agent uses the reward signals it receives to reinforce good actions.
- Remark: Sum of rewards is expected return,
   by definition of return. So expected return
   can be described in value function of a state
   or action.
  - To summarize, we use value functions to reinforce good actions.

#### Ch 1.3 State Value Function Example

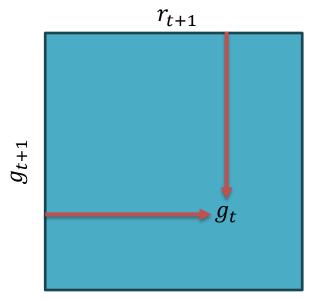


**Figure 1.4** Rewards r and values  $V^{\pi}(s)$  for each state s in a simple grid-world environment. The value of a state is calculated from the rewards using Equation 1.10 with  $\gamma$  = 0.9 while using a policy  $\pi$  that always takes the shortest path to the goal state with r = +1.

#### Ch 1.3 State Value Function Example



**Figure 1.4** Rewards r and values  $V^{\pi}(s)$  for each state s in a simple grid-world environment. The value of a state is calculated from the rewards using Equation 1.10 with  $\gamma$  = 0.9 while using a policy  $\pi$  that always takes the shortest path to the goal state with r = +1.



Let's check the value 0.8 of figure.  $v_{\pi}((3,2)) = \mathbb{E}[G_t|S_t = (3,2),\pi]$ 

$$= \sum_{g_t} P(G_t = g_t | S_t = (3, 2), \pi) g_t$$

$$= \sum_{r_{t+1},g_{t+1}} P(r_{t+1},g_{t+1}|S_t = (3,2),\pi)(r_{t+1} + \gamma g_{t+1})$$

 $g_t$  is decomposable with  $r_{t+1}, g_{t+1}$ :

$$g_t = r_{t+1} + g_{t+1}$$

When  $g_t$  exists, there must exist  $r_{t+1}$ ,  $g_{t+1}$  and vice

versa.

# Ch 1.3 State Value Function Example Continued...

But we don't know 
$$P(G_t)$$
, so we will use  $P(s', r|s, a)$ .  

$$\sum_{r_{t+1},g_{t+1}} P(R_{t+1} = r_{t+1}, G_{t+1} = g_{t+1}|S_t = (3,2), \pi)(r_{t+1} + \gamma g_{t+1})$$

$$= \sum_{r_{t+1},g_{t+1}} [P(r_{t+1}, g_{t+1}|(3,2), \pi)r_{t+1} + \gamma P(r_{t+1}, g_{t+1}|(3,2), \pi)g_{t+1}]$$

$$= \sum_{r_{t+1}} P(r_{t+1}|(3,2), \pi)r_{t+1} + \gamma \sum_{g_{t+1}} P(g_{t+1}|(3,2), \pi)g_{t+1} \because Marginalization$$

$$= \sum_{a_t,s_{t+1},r_{t+1}} P(r_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, (3,2), \pi)P(S_{t+1} = s_{t+1}|A_t = a_t, (3,2), \pi)P(a|(3,2), \pi)r_{t+1}$$

$$+ \gamma \sum_{a_t,s_{t+1},g_{t+1}} P(g_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, \pi)P(S_{t+1} = s_{t+1}|A_t = a_t, (3,2), \pi)P(a|(3,2), \pi)r_{t+1}$$

$$+ \gamma \sum_{a_t,s_{t+1},r_{t+1}} P(r_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, \pi)P(S_{t+1} = s_{t+1}|A_t = a_t, (3,2), \pi)P(a|(3,2), \pi)r_{t+1}$$

$$+ \gamma \sum_{a_t,s_{t+1},r_{t+1}} [g_{t+1}P(g_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, \pi)P(S_{t+1} = s_{t+1}|A_t = a_t, (3,2), \pi)P(a|(3,2), \pi)r_{t+1}$$

$$+ \gamma \sum_{a_t,s_{t+1},g_{t+1}} [g_{t+1}P(g_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, \pi)P(S_{t+1} = s_{t+1}|A_t = a_t, (3,2), \pi)P(a|(3,2), \pi)r_{t+1}$$

$$+ \gamma \sum_{a_t,s_{t+1},g_{t+1}} [g_{t+1}P(g_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, \pi)]P(S_{t+1} = s_{t+1}|A_t = a_t, (3,2), \pi)P(a_t|(3,2), \pi)r_{t+1}$$

$$+ \gamma \sum_{a_t,s_{t+1},g_{t+1}} [g_{t+1}P(g_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, \pi)]P(S_{t+1} = s_{t+1}|A_t = a_t, (3,2), \pi)P(a_t|(3,2), \pi)r_{t+1}$$

Ch 1.3 State Value Function Example Continued...

$$\sum_{a_t, s_{t+1}, r_{t+1}} P(r_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, \pi) P(S_{t+1} = s_{t+1}|A_t = a_t, (3, 2), \pi) P(a|(3, 2), \pi) r_{t+1}$$

+ 
$$\gamma \sum_{a_t, s_{t+1}, g_{t+1}} [g_{t+1}P(g_{t+1}|S_{t+1} = s_{t+1}, A_t = a_t, \pi)]P(S_{t+1} = s_{t+1}|A_t = a_t, (3, 2), \pi)P(a_t|(3, 2), \pi)$$

Now we remove  $\sum_{a_t} P(a|\cdot)$ , as we know that  $\pi$  always select the shortest path to the goal, left.

$$= \sum_{s_{t+1}, r_{t+1}} P(r_{t+1}|S_{t+1} = s_{t+1}, left, \pi) P(S_{t+1} = s_{t+1}|left, (3, 2), \pi) r_{t+1}$$

+ 
$$\gamma \sum_{s_{t+1}, g_{t+1}} [g_{t+1}P(g_{t+1}|S_{t+1} = s_{t+1}, left, \pi)]P(S_{t+1} = s_{t+1}|left, (3, 2), \pi)$$

And remove  $P(S_{t+1}|left, (3,2))$ , because it is always 1, and substitute  $s_{t+1}$  as (3,1).

$$= \sum_{r_{t+1}} P(r_{t+1}|S_{t+1} = (3,1),\pi)r_{t+1} + \gamma \sum_{g_{t+1}} [g_{t+1}P(g_{t+1}|S_{t+1} = (3,1),\pi)]$$

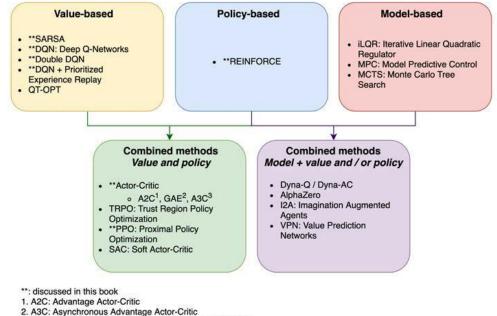
Reward of (3,1) is always 1.0 and return of (3,1) is always 0 because the exploration is terminated. = (1 - 0.1) = 0.9

But why it is not 0.8? There is hidden terminal state in the figure, but not described.  $-0.1 + 0.9 \cdot (1) = 0.8$ 

# Ch 1.4 Deep Reinforcement Learning Algorithms

## Ch 1.4 Deep Reinforcement Learning Algorithms

- Reinforcement learning is a problem of determining policy over a given environment.
- So, how can we get the good policy?



3. GAE: Actor-Critic with Generalized Advantage Estimation

#### Ch 1.4.1 Policy-Based Algorithms

- We can just try to learn a policy directly from the given environment.
- In this case, we learn probability distribution  $\pi(a|s)$  directly.

$$J(\tau) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t=0}^{T} \gamma^t r_t \right]$$

- **REINFORCE** is the most famous policy-based algorithm.
- Policies always converge to local minima, by Policy Gradient Theorem.
- Policy-based methods have high variance and are sample-efficient.

Ch 1.4.1 Wait, what's the bias and variance of model?

$$MSE(x) = \sigma^{2} + \left(h^{*}(x) - h_{avg}(x)\right)^{2} + Var(h_{S}(x))$$

- x is a sample drawn from an environment and  $\sigma$  is a noise variance over x.
- h\* is a ground truth model of environment.
- $h_S$  is a model trained over a dataset S and trained by a stochastic algorithm.
- $h_{avg}$  is the mean of outputs  $\mathbb{E}_{S}[h_{S}(x)]$ .
- $(h^*(x) h_{avg}(x))$  is a bias, which means that "How much far away the models' outputs mean from the ground truth."
- Var(h<sub>S</sub>(x)) is a variance, which means that "How much the models' outputs are scattered."
- There is always tradeoff between bias and variance.

#### Ch 1.4.2 Value-Based Algorithms

- We can assume that target environment has Markov property, which means that MDP can be applied.
- By assuming MDP, we can use value functions:  $v_{\pi}$ ,  $q_{\pi}$ .
- SARSA is one of the oldest RL algorithm: it learns  $q_{\pi}$ . But it is not used because of high variance and sample inefficiency.
- Deep Q-Networks and its descendants are much more popular these days. (Ch 4, 5)
- Sample-efficient and lower variance, but no guarantee of converge.

### Ch 1.4.3 Model-Based Algorithms

- If we have the dynamics of the target environment, we can utilize it. E.g. Games
- Monte Carlo Tree Search (MCTS) is a well-known model-based method that can be applied to problems with deterministic discrete state spaces. E.g. Go programs.
- Linear Quadratic Regulators (iLQR) [79] or Model Predictive Control (MPC), involve learning the transition dynamics.
- In robotics. Compared to policy-based or value-based methods, these algorithms also tend to require many fewer samples of data to learn good policies.
- However, for most problems, models are hard to come by. Many environments are stochastic, and their transition dynamics are not known.
- The distinction between model-based and model-free is also used to classify reinforcement learning algorithms.

#### Ch 1.4.4 Combined Algorithms: Actor-Critic

- We can combine policy-based and value-based. It is called Actor-Critic.
- Actor-critic algorithms' area is under development.
- Trust Region Policy Optimization, Proximal Policy Optimization are the examples of actor-critic.
- We can also combine model-based and others.
- AlphaGo combines MCTS, state value and policy-based.
- Dyna-Q iteratively learns the environment and train action-value function.

# Ch 1.4.6 On-Policy and Off-Policy Algorithms

- On-policy algorithms only utilized data generated from the current policy.
  - E.g. REINFORCE, SARSA, actor-critic, PPO
- Off-policy algorithms additionally utilize data not generated from the current policy. It is sample efficient.
  - E.g. DQN and its extensions.

# Ch 1.5 Deep Learning for Reinforcement Learning

# Ch 1.5 Deep Learning for Reinforcement Learning

- Deep learning can approximate the function.
- Any input and label pair are given in advance: the neural network interacts with environment.
- Previous input affects later output: it makes hard to apply gradient descent.

# Ch 1.6 Reinforcement Learning and Supervised Learning

# Ch 1.6 Reinforcement Learning and Supervised Learning

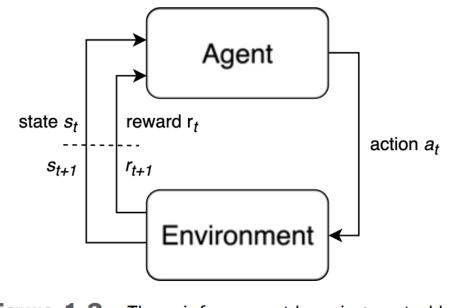
- There are many differences between supervised learning (SL) and reinforcement learning.
  - Lack of an oracle
  - Sparsity of feedback
  - Data generated during training

# Ch 1.6.1~2 Lack of an Oracle and Sparsity of Feedback

- We do not know the correct answer in RL.
- In SL, labels convey a lot of information. (usually 1 bit per class.)
- In RL, we just receive how good or bad the action was. It does not tell us the action was correct.
- Often, the reward function of environment is very sparse.
- We don't know whether our previous actions were good or not.
- In fact, even if we are given the reward, we cannot specify the actions that evokes positive/negative rewards.
- The combination of lack of oracle and sparse feedback makes RL less sample-efficient.

#### Ch 1.6.3 Data Generation

- In SL, just apply a pre-drawn dataset.
- In RL, the model interacts with the environment. It makes up feedback loop.



**Figure 1.2** The reinforcement learning control loop