
2024.05.20

Introduction to

Reinforcement

Learning

Presentation: Baekryun Seong

Table of Contents Value Function

Deep Reinforcement Learning Algorithms

Deep Learning for Reinforcement Learning

Reinforcement Learning and Supervised Learning

Ch 1.3 State Value Function and Action Value Function

In the last presentation, we studied the concept of value function:

State Value Function 𝑣𝜋 is an expected return of a state.

𝑣𝜋 𝑠 = 𝔼𝑎~𝜋 𝐺𝑡|𝑠 = 𝔼𝑎~𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑠

Action Value Function 𝑞𝜋 is an expected return about an action.

𝑞𝜋 𝑠, 𝑎 = 𝔼𝑎~𝜋 𝐺𝑡|𝑠, 𝑎 = 𝔼𝑎~𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑠, 𝑎

So, why should we define it?

Ch 1.3 Recall: The Reinforcement Learning Control Loop

- RL Problems have an objective, which is the

sum of rewards received by an agent.

- An agent uses the reward signals it receives

to reinforce good actions.

- Remark: Sum of rewards is expected return,

by definition of return. So expected return

can be described in value function of a state

or action.

- To summarize, we use value functions to

reinforce good actions.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley

Professional.

Ch 1.3 State Value Function Example

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley

Professional.

Ch 1.3 State Value Function Example

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley

Professional.

Let’s check the value 0.8 of figure.

𝑣𝜋 3,2 = 𝔼 𝐺𝑡 𝑆𝑡 = 3,2 , 𝜋

=

𝑔𝑡

𝑃 𝐺𝑡 = 𝑔𝑡 𝑆𝑡 = 3,2 , 𝜋 𝑔𝑡

=

𝑟𝑡+1,𝑔𝑡+1

𝑃 𝑟𝑡+1, 𝑔𝑡+1 𝑆𝑡 = 3,2 , 𝜋 (𝑟𝑡+1 + 𝛾𝑔𝑡+1)
𝑟𝑡+1

𝑔
𝑡+

1

𝑔𝑡

𝑔𝑡 is decomposable with 𝑟𝑡+1, 𝑔𝑡+1 :

𝑔𝑡 = 𝑟𝑡+1 + 𝑔𝑡+1

When 𝑔𝑡 exists, there must exist 𝑟𝑡+1, 𝑔𝑡+1 and vice

versa.

Ch 1.3 State Value Function Example Continued…

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

But we don’t know 𝑃 𝐺𝑡 , so we will use 𝑃(𝑠′, 𝑟|𝑠, 𝑎).

𝑟𝑡+1,𝑔𝑡+1

𝑃 𝑅𝑡+1 = 𝑟𝑡+1, 𝐺𝑡+1 = 𝑔𝑡+1 𝑆𝑡 = 3,2 , 𝜋 (𝑟𝑡+1 + 𝛾𝑔𝑡+1)

=

𝑟𝑡+1,𝑔𝑡+1

[𝑃 𝑟𝑡+1, 𝑔𝑡+1 3,2 , 𝜋 𝑟𝑡+1 + 𝛾𝑃 𝑟𝑡+1, 𝑔𝑡+1 3,2 , 𝜋 𝑔𝑡+1]

=

𝑟𝑡+1

𝑃 𝑟𝑡+1 3,2 , 𝜋 𝑟𝑡+1 + 𝛾

𝑔𝑡+1

𝑃 𝑔𝑡+1 3,2 , 𝜋 𝑔𝑡+1 ∵ 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

=

𝑎𝑡,𝑠𝑡+1,𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃(𝑎| 3,2 , 𝜋)𝑟𝑡+1

+ 𝛾

𝑎𝑡,𝑠𝑡+1,𝑔𝑡+1

𝑃 𝑔𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃(𝑎𝑡| 3,2 , 𝜋)𝑔𝑡+1

=

𝑎𝑡,𝑠𝑡+1,𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡 , 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃(𝑎| 3,2 , 𝜋)𝑟𝑡+1

+ 𝛾

𝑎𝑡,𝑠𝑡+1,𝑔𝑡+1

𝑔𝑡+1𝑃 𝑔𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡 , 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃(𝑎𝑡| 3,2 , 𝜋)

∵ 𝑀𝑎𝑟𝑘𝑜𝑣 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

Ch 1.3 State Value Function Example Continued…

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

𝑎𝑡,𝑠𝑡+1,𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡, 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡, 3,2 , 𝜋 𝑃(𝑎| 3,2 , 𝜋)𝑟𝑡+1

+ 𝛾

𝑎𝑡,𝑠𝑡+1,𝑔𝑡+1

𝑔𝑡+1𝑃 𝑔𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡, 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡, 3,2 , 𝜋 𝑃(𝑎𝑡| 3,2 , 𝜋)

Now we remove σ𝑎𝑡
, 𝑃(𝑎| ⋅), as we know that 𝜋 always select the shortest path to the goal, left.

=

𝑠𝑡+1,𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝑙𝑒𝑓𝑡, 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝑙𝑒𝑓𝑡, 3,2 , 𝜋 𝑟𝑡+1

+ 𝛾

𝑠𝑡+1,𝑔𝑡+1

𝑔𝑡+1𝑃 𝑔𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝑙𝑒𝑓𝑡, 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝑙𝑒𝑓𝑡, 3,2 , 𝜋

And remove 𝑃(𝑆𝑡+1|𝑙𝑒𝑓𝑡, (3,2)), because it is always 1, and substitute 𝑠𝑡+1 as (3,1).

=

𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = (3,1), 𝜋 𝑟𝑡+1 + 𝛾

𝑔𝑡+1

𝑔𝑡+1𝑃 𝑔𝑡+1 𝑆𝑡+1 = (3,1), 𝜋

Reward of (3,1) is always 1.0 and return of (3,1) is always 0 because the exploration is terminated.

= 1 − 0.1 = 0.9
But why it is not 0.8? There is hidden terminal state in the figure, but not described.

−0.1 + 0.9 ⋅ 1 = 0.8

Ch 1.4

Deep Reinforcement Learning Algorithms

Ch 1.4 Deep Reinforcement Learning Algorithms

- Reinforcement learning is a problem of determining policy over a given environment.

- So, how can we get the good policy?

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.4.1 Policy-Based Algorithms

▪ We can just try to learn a policy directly from the given environment.

▪ In this case, we learn probability distribution 𝜋(𝑎|𝑠) directly.

𝐽 𝜏 = 𝔼𝜏~𝜋

𝑡=0

𝑇

𝛾𝑡𝑟𝑡

▪ REINFORCE is the most famous policy-based algorithm.

▪ Policies always converge to local minima, by Policy Gradient Theorem.

▪ Policy-based methods have high variance and are sample-efficient.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.4.1 Wait, what’s the bias and variance of model?

𝑀𝑆𝐸 𝑥 = 𝜎2 + ℎ∗ 𝑥 − ℎ𝑎𝑣𝑔 𝑥
2

+ 𝑉𝑎𝑟 ℎ𝑆 𝑥

▪ 𝑥 is a sample drawn from an environment and 𝜎 is a noise variance over 𝑥.

▪ ℎ∗ is a ground truth model of environment.

▪ ℎ𝑆 is a model trained over a dataset 𝑆 and trained by a stochastic algorithm.

▪ ℎ𝑎𝑣𝑔 is the mean of outputs 𝔼𝑆 ℎ𝑆 𝑥 .

▪ ℎ∗ 𝑥 − ℎ𝑎𝑣𝑔 𝑥 is a bias, which means that “How much far away the models’ outputs

mean from the ground truth.”

▪ 𝑉𝑎𝑟 ℎ𝑆 𝑥 is a variance, which means that “How much the models’ outputs are

scattered.”

▪ There is always tradeoff between bias and variance.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.4.2 Value-Based Algorithms

▪ We can assume that target environment has Markov property, which means that MDP can

be applied.

▪ By assuming MDP, we can use value functions: 𝑣𝜋, 𝑞𝜋.

▪ SARSA is one of the oldest RL algorithm: it learns 𝑞𝜋. But it is not used because of high

variance and sample inefficiency.

▪ Deep Q-Networks and its descendants are much more popular these days. (Ch 4, 5)

▪ Sample-efficient and lower variance, but no guarantee of converge.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.4.3 Model-Based Algorithms

▪ If we have the dynamics of the target environment, we can utilize it. E.g. Games

▪ Monte Carlo Tree Search (MCTS) is a well-known model-based method that can be

applied to problems with deterministic discrete state spaces. E.g. Go programs.

▪ Linear Quadratic Regulators (iLQR) [79] or Model Predictive Control (MPC), involve

learning the transition dynamics.

▪ In robotics. Compared to policy-based or value-based methods, these algorithms also tend

to require many fewer samples of data to learn good policies.

▪ However, for most problems, models are hard to come by. Many environments are

stochastic, and their transition dynamics are not known.

▪ The distinction between model-based and model-free is also used to classify reinforcement

learning algorithms.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.4.4 Combined Algorithms: Actor-Critic

▪ We can combine policy-based and value-based. It is called Actor-Critic.

▪ Actor-critic algorithms’ area is under development.

▪ Trust Region Policy Optimization, Proximal Policy Optimization are the examples of

actor-critic.

▪ We can also combine model-based and others.

▪ AlphaGo combines MCTS, state value and policy-based.

▪ Dyna-Q iteratively learns the environment and train action-value function.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.4.6 On-Policy and Off-Policy Algorithms

▪ On-policy algorithms only utilized data generated from the current policy.

▪ E.g. REINFORCE, SARSA, actor-critic, PPO

▪ Off-policy algorithms additionally utilize data not generated from the current policy. It is

sample efficient.

▪ E.g. DQN and its extensions.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.5

Deep Learning for Reinforcement Learning

Ch 1.5 Deep Learning for Reinforcement Learning

▪ Deep learning can approximate the function.

▪ Any input and label pair are given in advance: the neural network interacts with

environment.

▪ Previous input affects later output: it makes hard to apply gradient descent.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.6

Reinforcement Learning and Supervised Learning

Ch 1.6 Reinforcement Learning and Supervised Learning

▪ There are many differences between supervised learning (SL) and reinforcement learning.

▪ Lack of an oracle

▪ Sparsity of feedback

▪ Data generated during training

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.6.1~2 Lack of an Oracle and Sparsity of Feedback

▪ We do not know the correct answer in RL.

▪ In SL, labels convey a lot of information. (usually 1 bit per class.)

▪ In RL, we just receive how good or bad the action was. It does not tell us the action was

correct.

▪ Often, the reward function of environment is very sparse.

▪ We don’t know whether our previous actions were good or not.

▪ In fact, even if we are given the reward, we cannot specify the actions that evokes

positive/negative rewards.

▪ The combination of lack of oracle and sparse feedback makes RL less sample-efficient.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

Ch 1.6.3 Data Generation

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

▪ In SL, just apply a pre-drawn dataset.

▪ In RL, the model interacts with the environment. It makes up feedback loop.

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22

