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Ch 1.3 State Value Function and Action Value Function

In the last presentation, we studied the concept of value function:

State Value Function 𝑣𝜋 is an expected return of a state.

𝑣𝜋 𝑠 = 𝔼𝑎~𝜋 𝐺𝑡|𝑠 = 𝔼𝑎~𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑠

Action Value Function 𝑞𝜋 is an expected return about an action.

𝑞𝜋 𝑠, 𝑎 = 𝔼𝑎~𝜋 𝐺𝑡|𝑠, 𝑎 = 𝔼𝑎~𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑠, 𝑎

So, why should we define it?



Ch 1.3 Recall: The Reinforcement Learning Control Loop

- RL Problems have an objective, which is the 

sum of rewards received by an agent.

- An agent uses the reward signals it receives 

to reinforce good actions.

- Remark: Sum of rewards is expected return, 

by definition of return. So expected return 

can be described in value function of a state 

or action.

- To summarize, we use value functions to 

reinforce good actions.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley 

Professional.



Ch 1.3 State Value Function Example

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley 

Professional.



Ch 1.3 State Value Function Example

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley 

Professional.

Let’s check the value 0.8 of figure.

𝑣𝜋 3,2 = 𝔼 𝐺𝑡 𝑆𝑡 = 3,2 , 𝜋

= 

𝑔𝑡

𝑃 𝐺𝑡 = 𝑔𝑡 𝑆𝑡 = 3,2 , 𝜋 𝑔𝑡

= 

𝑟𝑡+1,𝑔𝑡+1

𝑃 𝑟𝑡+1, 𝑔𝑡+1 𝑆𝑡 = 3,2 , 𝜋 (𝑟𝑡+1 + 𝛾𝑔𝑡+1)
𝑟𝑡+1

𝑔
𝑡+

1

𝑔𝑡

𝑔𝑡 is decomposable with 𝑟𝑡+1, 𝑔𝑡+1 :

𝑔𝑡 = 𝑟𝑡+1 + 𝑔𝑡+1

When 𝑔𝑡 exists, there must exist 𝑟𝑡+1, 𝑔𝑡+1 and vice 

versa.



Ch 1.3 State Value Function Example Continued…

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

But we don’t know 𝑃 𝐺𝑡 , so we will use 𝑃(𝑠′, 𝑟|𝑠, 𝑎).



𝑟𝑡+1,𝑔𝑡+1

𝑃 𝑅𝑡+1 = 𝑟𝑡+1, 𝐺𝑡+1 = 𝑔𝑡+1 𝑆𝑡 = 3,2 , 𝜋 (𝑟𝑡+1 + 𝛾𝑔𝑡+1)

= 

𝑟𝑡+1,𝑔𝑡+1

[𝑃 𝑟𝑡+1, 𝑔𝑡+1 3,2 , 𝜋 𝑟𝑡+1 + 𝛾𝑃 𝑟𝑡+1, 𝑔𝑡+1 3,2 , 𝜋 𝑔𝑡+1]

= 

𝑟𝑡+1

𝑃 𝑟𝑡+1 3,2 , 𝜋 𝑟𝑡+1 + 𝛾 

𝑔𝑡+1

𝑃 𝑔𝑡+1 3,2 , 𝜋 𝑔𝑡+1 ∵ 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

= 

𝑎𝑡,𝑠𝑡+1,𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃(𝑎| 3,2 , 𝜋)𝑟𝑡+1

+ 𝛾 

𝑎𝑡,𝑠𝑡+1,𝑔𝑡+1

𝑃 𝑔𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃(𝑎𝑡| 3,2 , 𝜋)𝑔𝑡+1

= 

𝑎𝑡,𝑠𝑡+1,𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡 , 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃(𝑎| 3,2 , 𝜋)𝑟𝑡+1

+ 𝛾 

𝑎𝑡,𝑠𝑡+1,𝑔𝑡+1

𝑔𝑡+1𝑃 𝑔𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡 , 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡 , 3,2 , 𝜋 𝑃(𝑎𝑡| 3,2 , 𝜋)

∵ 𝑀𝑎𝑟𝑘𝑜𝑣 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛



Ch 1.3 State Value Function Example Continued…

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



𝑎𝑡,𝑠𝑡+1,𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡, 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡, 3,2 , 𝜋 𝑃(𝑎| 3,2 , 𝜋)𝑟𝑡+1

+ 𝛾 

𝑎𝑡,𝑠𝑡+1,𝑔𝑡+1

𝑔𝑡+1𝑃 𝑔𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝐴𝑡 = 𝑎𝑡, 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝐴𝑡 = 𝑎𝑡, 3,2 , 𝜋 𝑃(𝑎𝑡| 3,2 , 𝜋)

Now we remove σ𝑎𝑡
, 𝑃(𝑎| ⋅), as we know that 𝜋 always select the shortest path to the goal, left.

= 

𝑠𝑡+1,𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝑙𝑒𝑓𝑡, 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝑙𝑒𝑓𝑡, 3,2 , 𝜋 𝑟𝑡+1

+ 𝛾 

𝑠𝑡+1,𝑔𝑡+1

𝑔𝑡+1𝑃 𝑔𝑡+1 𝑆𝑡+1 = 𝑠𝑡+1, 𝑙𝑒𝑓𝑡, 𝜋 𝑃 𝑆𝑡+1 = 𝑠𝑡+1 𝑙𝑒𝑓𝑡, 3,2 , 𝜋

And remove 𝑃(𝑆𝑡+1|𝑙𝑒𝑓𝑡, (3,2)), because it is always 1, and substitute 𝑠𝑡+1 as (3,1).

= 

𝑟𝑡+1

𝑃 𝑟𝑡+1 𝑆𝑡+1 = (3,1), 𝜋 𝑟𝑡+1 + 𝛾 

𝑔𝑡+1

𝑔𝑡+1𝑃 𝑔𝑡+1 𝑆𝑡+1 = (3,1), 𝜋

Reward of (3,1) is always 1.0 and return of (3,1) is always 0 because the exploration is terminated.

= 1 − 0.1 = 0.9
But why it is not 0.8? There is hidden terminal state in the figure, but not described.

−0.1 + 0.9 ⋅ 1 = 0.8
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Ch 1.4 Deep Reinforcement Learning Algorithms

- Reinforcement learning is a problem of determining policy over a given environment.

- So, how can we get the good policy?

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



Ch 1.4.1 Policy-Based Algorithms

▪ We can just try to learn a policy directly from the given environment.

▪ In this case, we learn probability distribution 𝜋(𝑎|𝑠) directly.

𝐽 𝜏 = 𝔼𝜏~𝜋 

𝑡=0

𝑇

𝛾𝑡𝑟𝑡

▪ REINFORCE is the most famous policy-based algorithm.

▪ Policies always converge to local minima, by Policy Gradient Theorem.

▪ Policy-based methods have high variance and are sample-efficient.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



Ch 1.4.1 Wait, what’s the bias and variance of model?

𝑀𝑆𝐸 𝑥 = 𝜎2 + ℎ∗ 𝑥 − ℎ𝑎𝑣𝑔 𝑥
2

+ 𝑉𝑎𝑟 ℎ𝑆 𝑥

▪ 𝑥 is a sample drawn from an environment and 𝜎 is a noise variance over 𝑥.

▪ ℎ∗ is a ground truth model of environment.

▪ ℎ𝑆 is a model trained over a dataset 𝑆 and trained by a stochastic algorithm.

▪ ℎ𝑎𝑣𝑔 is the mean of outputs 𝔼𝑆 ℎ𝑆 𝑥 .

▪ ℎ∗ 𝑥 − ℎ𝑎𝑣𝑔 𝑥 is a bias, which means that “How much far away the models’ outputs 

mean from the ground truth.”

▪ 𝑉𝑎𝑟 ℎ𝑆 𝑥 is a variance, which means that “How much the models’ outputs are 

scattered.”

▪ There is always tradeoff between bias and variance.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



Ch 1.4.2 Value-Based Algorithms

▪ We can assume that target environment has Markov property, which means that MDP can 

be applied.

▪ By assuming MDP, we can use value functions: 𝑣𝜋, 𝑞𝜋.

▪ SARSA is one of the oldest RL algorithm: it learns 𝑞𝜋. But it is not used because of high 

variance and sample inefficiency.

▪ Deep Q-Networks and its descendants are much more popular these days. (Ch 4, 5)

▪ Sample-efficient and lower variance, but no guarantee of converge.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



Ch 1.4.3 Model-Based Algorithms

▪ If we have the dynamics of the target environment, we can utilize it. E.g. Games

▪ Monte Carlo Tree Search (MCTS) is a well-known model-based method that can be 

applied to problems with deterministic discrete state spaces. E.g. Go programs.

▪ Linear Quadratic Regulators (iLQR) [79] or Model Predictive Control (MPC), involve 

learning the transition dynamics.

▪ In robotics. Compared to policy-based or value-based methods, these algorithms also tend 

to require many fewer samples of data to learn good policies.

▪ However, for most problems, models are hard to come by. Many environments are 

stochastic, and their transition dynamics are not known.

▪ The distinction between model-based and model-free is also used to classify reinforcement 

learning algorithms.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



Ch 1.4.4 Combined Algorithms: Actor-Critic

▪ We can combine policy-based and value-based. It is called Actor-Critic.

▪ Actor-critic algorithms’ area is under development.

▪ Trust Region Policy Optimization, Proximal Policy Optimization are the examples of 

actor-critic.

▪ We can also combine model-based and others.

▪ AlphaGo combines MCTS, state value and policy-based.

▪ Dyna-Q iteratively learns the environment and train action-value function.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



Ch 1.4.6 On-Policy and Off-Policy Algorithms

▪ On-policy algorithms only utilized data generated from the current policy.

▪ E.g. REINFORCE, SARSA, actor-critic, PPO

▪ Off-policy algorithms additionally utilize data not generated from the current policy. It is 

sample efficient.

▪ E.g. DQN and its extensions.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.
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Ch 1.5 Deep Learning for Reinforcement Learning

▪ Deep learning can approximate the function.

▪ Any input and label pair are given in advance: the neural network interacts with 

environment.

▪ Previous input affects later output: it makes hard to apply gradient descent.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.
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Reinforcement Learning and Supervised Learning



Ch 1.6 Reinforcement Learning and Supervised Learning

▪ There are many differences between supervised learning (SL) and reinforcement learning.

▪ Lack of an oracle

▪ Sparsity of feedback

▪ Data generated during training

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



Ch 1.6.1~2 Lack of an Oracle and Sparsity of Feedback

▪ We do not know the correct answer in RL.

▪ In SL, labels convey a lot of information. (usually 1 bit per class.)

▪ In RL, we just receive how good or bad the action was. It does not tell us the action was 

correct.

▪ Often, the reward function of environment is very sparse.

▪ We don’t know whether our previous actions were good or not.

▪ In fact, even if we are given the reward, we cannot specify the actions that evokes 

positive/negative rewards.

▪ The combination of lack of oracle and sparse feedback makes RL less sample-efficient.

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.



Ch 1.6.3 Data Generation

Graesser, L., & Keng, W. L. (2019). Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional.

▪ In SL, just apply a pre-drawn dataset.

▪ In RL, the model interacts with the environment. It makes up feedback loop.
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