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Sequence Approximation
Using FeedForward Spiking-
Neural Network

For Spatiotemporal Learning



Key Contributions

We prove that any spike-sequence-to-spike-sequence mapping functions on a compact do-
main can be approximated by feedforward SNN with one neuron per layer using skip-layer
connections, which cannot be achieved if no skip-layer connection is used.

We prove that using heterogeneous neurons having different dynamics and skip-layer con-
nection increases the number of memory pathways a feedforward SNN can achieve and
hence, improves SNN's capability to represent arbitrary sequences.

We develop complex SNN architectures using the preceding theoretical observations and
experimentally demonstrate that they can be trained with supervised BPTT and unsuper-
vised STDP for spatiotemporal data classification.

We design a dual-search-space option for Bayesian optimization process to sequentially op-
timize network architectures and neuron dynamics of a feedforward SNN considering het-
erogeneity and skip-layer connection to improve learning and classification of spatiotem-
poral patterns.



Lemma l

Lemma 1 For any input spike sequence with period t;,, in range [Tinin. Tz, there exists a spik-
ing neuwron n with fixed parameters vy, Vyparr, @, R, and 7,,, such that by changing synaptic
conductance G, it is possible to set the neuron response rate ~,, to be any positive integer.




Definition 1

Lemma 1 For any input spike sequence with period t;,, in range [Tinin. Tz, there exists a spik-
ing neuwron n with fixed parameters vy, Vyparr, @, R, and 7,,, such that by changing synaptic
conductance G, it is possible to set the neuron response rate ~,, to be any positive integer.

Definition 1 Neuron Response Rate - For a spiking neuron n with membrane potential at v-¢ze¢ and
input spike sequence with period 7;,,, 7 is the number of input spike n needs to reach v,;,.

Neuron Response Rate: t;,,O|2t= A|ZF S | &y Q| ALO|A 7}
= 0120k M|Z 8} M 2|(potential) 7t & X|(threshold) v,,0fl EOtA, =
S ALO[AE LM =CF



Lemma 1 from definition 1

Lemma 1 For any input spike sequence with period t;,, in range [Tinin. Tz, there exists a spik-
ing neuwron n with fixed parameters vy, Vyparr, @, R, and 7,,, such that by changing synaptic
conductance G, it is possible to set the neuron response rate ~,, to be any positive integer.

Neuron Response Rate: t;,,0|2t= A|ZF S X|A y Q| ALO|3 7}

=0 2tOF M|ZZ 8} ™ 2| (potential)7t & K| (threshold) vthoﬂ TOLA, =
S ALO[ZF L =Lt

Lemma 1: 22|= 72| Hyperparameters& A2 &0 QS
& I:'|E|’c“>—’|‘— (synaptic conductance) G Bt2 HASH A, MZE7} &
o[t ATfO|T YT Z XXt 2 OICH



Meaning of Lemmal

Lemma 1 For any input spike sequence with period t;,, in range [Tinin. Tz, there exists a spik-
ing neuwron n with fixed parameters vy, Vyparr, @, R, and 7,,, such that by changing synaptic
conductance G, it is possible to set the neuron response rate ~,, to be any positive integer.

Lemma 1: S2l= 72| Hyperparameters& A Z &0 Q=
M F H|2f| &= (synaptic conductance) G Bt2 HZASHA, M=t &
Sot7| flet 2mMo|2 EEE X|EY = ULCH
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Idea: G matrix2 QS0 StSA|ZICHH, QE|= e S20| 2+2t o}
£ 200|3 =0 &3otA 2 = UCH




Theorem 1

—

Theorem 1 For any input and target output spike sequence pair with periods (tin.tout) €
Trins Tonaz) * [Tonins Tinax ) there exists a minimal-layer-size network with skip-layer connections

that has memory pathway with output spike period function P(t) such that |P(t;,,) — tout| < €

Theorem 1: 22|= OfHH YH-= A0 CHSHA memory pathway
|_:

= 7|1 Y8 =5 *|7f(per|od) QXt7t € 0|52l SNNE BHE
2= QUEH (Universal Approximation Thm. of SNN)

But what is memory pathway?
And what is Universal Approximation Theorem? <



Theorem 1 - Memory Pathway

Theorem 1 For any input and target output spike sequence pair with periods (tin.tout) €

W
Trins Tonaz) * [Tonins Tinax ) there exists a minimal-layer-size network with skip-layer connections
that has memory pathway with output spike period function P(t) such that | P(t;,)

- Duf' < &
Theorem 1: —?—E|E o H-=8 40 CisHAM memory pathway
£ X2 Yt 23 A|ZHperiod) X7t € 0|2 SNNS 2=
= UACH

Definition 2 Memory Pathways For a feedforward SNN with m layers, a memory pathway is defined

as a spike propagation path from input to the output layer. Two memory pathways are considered
distinct if the set of neurons contained in them is different.

Memory Pathways: SNNO|A] 752t 2= spike T I} Z 2!



Theorem 1 - Memory Pathway
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Theorem 1 - Memory Pathway

Theorem 1 For any input and target output spike sequence pair with periods (tin.tout) €

W
Trins Tonaz) * [Tonins Tinax ) there exists a minimal-layer-size network with skip-layer connections
that has memory pathway with output spike period function P(t) such that |P(t;,,) —

Tm.”| ‘=. .
Theorem 1: —?—E|E o H-=8 40 CisHAM memory pathway
£ X2 Yt 23 A|ZHperiod) X7t € 0|2 SNNS 2=
= UACH

Definition 2 Memory Pathways For a feedforward SNN with m layers, a memory pathway is defined

as a spike propagation path from input to the output layer. Two memory pathways are considered
distinct if the set of neurons contained in them is different.

“For any input ..., there exists a minimal-layer-size network ... that
has memory pathway”
2t 22, O @
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Theorem 1

Theorem 1 For any input and target output spike sequence pair with periods (tin.tout) €
T ins Linasl % | Tinins Tinax ), there exists a minimal-layer-size network with skip-layer connections
that has memory pathway with output spike period function P(t) such that |P(t,,,) —t,.:| < &

Theorem 1: 22|= O YH-Z A0 CHSHA memory pathway
£ X2 Yt 23 A|ZHperiod) X7t € 0|2 SNNS 2=
= UACH

“For any input ..., there exists a minimal-layer-size network ... that
has memory pathway”

o= 22, O UH-=8 40| FHX|H gH->==85 &S
Spiking FFNNE £Z=d Tt= = Ut X!

"... with output spike period function ... |P(t;,) — toyl < € Bt &
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Theorem 1

—

"

Theorem 1 For anv input and target output spike sequence pair with periods (tin.tout)
Trins Tonaz) * [Tonins Tinax ) there exists a minimal-layer-size network with skip-layer connections
— Duf' < &

that has memory pathway with output spike period function P(t) such that | P(t;,)
Theorem 1: —?—E|E o H-=8 40 CisHAM memory pathway
£ 7HX|0 Yt B2 A|ZH(period) LXH7} € 0|52l SNNS 2HE
* QICH
The meaning of Theorem 1. We can approximate any spike

sequence with SNN with skip-layer!



But what is Universal Approximation Thm

5= 2 S AT

=

198949 =X| A|# A (Cybenko)7t L& A H2|(Cybenko's theorem)= Ct=1t ZCH

P2 AD20|E B Halo| dx Bat SN, p(€) = 1/(1+e €)).[0,1]" E= R"el 22 TN 250l ds g foh e > 071
ZORID, CH32 250 HE wy, Wa,..., WN, , 62 070 2= G, w, 0, 6) : [0,1]" — RO| ZWH3ICH,

|G(x, w,a, ) — f(z)| < || for all x £ [0,1]"
ol

&},HJ'CR,W=(W]?W2 Wn.,.}?ft—{a],ﬁz, O:_.\,'},ﬁl'={ﬂl.,ﬁ'g,...,ﬁdﬂ.;:loll:f.
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Lemma 2

Lemma 2 With no skip-layer connection, there does not exist a minimal-layer-size network that has
output spike period function P(t) such that for any input and target output spike sequence pair with
Pf-””ff?’dS (f‘z’n-. tout} S ['Tmz'nelea.:r] X L.Im*in-. 'ﬂna:c}! |P(f3n) _ tout| < €

The meaning of Lemma 2: We cannot approximate spike
sequence without skip-layer!



Lemma 3,4,5

Lemma 3 A spiking neuron has cutoff period we = Tm In(~ ””5;:3?“ G) above which input spike
) o reset T

sequence cannot cause the spiking neuron to spike.

Lemma 4 For an mMND network with m layers and {\y, \a, ...\, } number of different neuron
dynamics in each layer, the least upper bound of the number of distinct memory pathways is H:}il y

Lemma 5 For an mMND network with m layers and {\1, \a, ...\;, } different neuron dynamics in
each layer and a skip-layer connection made between laver [, and Iy, s.t. a.b € {1.2,...m} and

(b —a) > 1, the least upper bound of the number of memory pathways is [];—; A\i + (J]i—1 \i -
m
[Lizy M)

i=b 7't



Proposed Model
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Dual-search-space Baysian Optimization

Dual-search-space Bayesian Optimization Bayesian optimization uses Gaussian process to model
the distribution of an objective function, and an acquisition function to decide points to evaluate.
For data points in a target dataset € X and the corresponding label ¥ € ¥, an SNN with network
structure V and neuron parameters VV acts as a function fy yy(2) that maps input data x to predicted
label 7. The optimization problem in this work is defined as

miny WP where P = Z Ly, fv.w(x)) (3)

re X, yeY

V contains the number of layers Njgyers, the number of memory dynamics Ngypnmaic and skip-
layer connection configuration variables Nggip. Lgiare and Leypq. each controlling the number of
skip-layer connections, the first layer and last layer to implement skip-layer connections. All of the
values are discrete. W contains the values for a, 7, and R, in (1), which are continuous. We
separate the discrete and continuous search spaces by implementing a dual-search-space optimiza-
tion process, where V is first optimized with fixed, manually tuned neuron parameters. After an
optimal structure is found, WV are optimized for the selected V. Details on the configurations of the
optimization process are listed in the appendix. To achieve Bayesian optimization with constraints,
we implement a modified expected improvement (EI) acquisition function similar to the one shown
by Gardner (Gardner et al., 2014), which uses a Gaussian process to model the feasibility indicator
due to its high evaluation cost. In this work, since the constraint function can be explicitly defined,
we use a feasibility indicator that is directly evaluated. The modified EI function is defined as:

L(W) = A(W) - max{0, P(W) — P(WT)} (4)

where W is the network configuration containing YW and V. W is the test point that provided
the best result. A(W) is the explicitly defined indicator function that takes the value of 1 when all
constraints are satisfied and O otherwise.



Dual-search-space Baysian Optimization

Validation Error (%)
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Dual-search-space Baysian Optimization

Table 3: Accuracy (%) tor DVS Gesture (top) and N-Caltech101 (bottom)

Labeled Data % In Training  Parameter
Model 100% 50% 30% 10%  Number
ConvLSNN (Salgj et al., 2020)  97.1 953 92.0 843 2.9M
DECOLLE (Kaiser et al., 2020)  97.5 950 91.2 839 1.3M
(Fang et al., 2021) 97.8 - - - -
HATS (Sironi et al., 2018) 952 9411 91.6 83.7 -
H-SNN (She et al., 2021) 96.2 958 93.7 &8.2 0.74M
This Work-STDP Training 96.6 96.0 94.1 91.2 0.81M
This Work-BPTT Training 98.0 953 9I1.1 824 1.1IM
Labeled Data % In Training  Parameter
Model 100% 70% 50% 30%  Number
ConvLSNN (Salgj et al., 2020)  63.1  58.7 51.3 454 3.0M
DECOLLE (Kaiser et al., 2020)  66.9 619 56.2 50.6 2.0M
HATS (Sironi et al., 2018) 642 61.0 543 488 -
H-SNN (She et al., 2021) 428 419 37.0 346 1.7TM
This Work-STDP Training 58.1 57.8 57.2 54.6 1.4M
This Work-BPTT Training 71.2 654 56.0 525 1.7M




	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19

