Neural Ordinary Differential Equations

CIDA Lab.

Presentation: Baekryun Seong

2024.12.27

Table of Contents

Preliminary

Ordinary Differential Equations

Variational Auto Encoder

Replacing Residual Networks with ODEs for Supervised Learning

Generative Latent Function Time-series Model

Can a recurrent (or residual) neural network predict the future with irregular time points?

"In classical neural networks, layers are arranged in a sequence indexed by natural numbers. In neural ODEs, however, **layers form a continuous family indexed by positive real numbers**."

Preliminary

$$\frac{dy}{dx}(x) = y(x)$$

<u>지수 함수 - 위키백과, 우리 모두의 백과사전</u>, obtained 2024.12.27.

Ordinary Differential Equation (ODE) is an equation that consists of single-valued function and its derivatives. **ODEs have functions as solutions.**

In general, we can't get the exact function that satisfies the ODE. Instead, we approximately calculate the value with Euler's method.

Variational Auto Encoder

Code: <u>minimal_vae/vae_mnist.py at master · adler-j/minimal_vae · GitHub</u>

https://process-mining.tistory.com/161

Replacing Residual Networks with ODEs for Supervised Learning

Table 1: Performance on MNIST. [†]From LeCun et al. (1998).

	Test Error	# Params	Memory	Time
1-Layer MLP [†]	1.60%	0.24 M	-	-
ResNet	0.41%	0.60 M	$\mathcal{O}(L)$	$\mathcal{O}(L)$
RK-Net	0.47%	0.22 M	$\mathcal{O}(ilde{L})$	$\mathcal{O}(ilde{L})$
ODE-Net	0.42%	0.22 M	$\mathcal{O}(1)$	$\mathcal{O}(ilde{L})$

Replacing Residual Networks with ODEs for Supervised Learning

```
v class ConcatConv2d(nn.Module):
```

```
v def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False):
    super(ConcatConv2d, self).__init__()
    module = nn.ConvTranspose2d if transpose else nn.Conv2d
    self._layer = module(
        dim_in + 1, dim_out, kernel_size=ksize, stride=stride, padding=padding, dilation=dilation, groups=groups,
        bias=bias
    )

    def forward(self, t, x):
        tt = torch.ones_like(x[:, :1, :, :]) * t
```

```
ttx = torch.cat([tt, x], 1)
```

```
return self._layer(ttx)
```

```
v class ODEfunc(nn.Module):
```

```
v def __init__(self, dim):
    super(ODEfunc, self).__init__()
    self.norm1 = norm(dim)
    self.relu = nn.ReLU(inplace=True)
    self.conv1 = ConcatConv2d(dim, dim, 3, 1, 1)
    self.norm2 = norm(dim)
    self.conv2 = ConcatConv2d(dim, dim, 3, 1, 1)
    self.norm3 = norm(dim)
    self.nfe = 0
```

- v def forward(self, t, x):
 - self.nfe += 1
 - out = self.norm1(x)
 - out = self.relu(out)
 - out = self.conv1(t, out)
 - out = self.norm2(out)
 - out = self.relu(out)
 - out = self.conv2(t, out)
 - out = self.norm3(out)

```
return out
```

Replacing Residual Networks with ODEs for Supervised Learning

v class ODEBlock(nn.Module):

```
def __init__(self, odefunc):
    super(ODEBlock, self).__init__()
    self.odefunc = odefunc
    self.integration_time = torch.tensor([0, 1]).float()
```

```
def forward(self, x):
    self.integration_time = self.integration_time.type_as(x)
    out = odeint(self.odefunc, x, self.integration_time, rtol=args.tol, atol=args.tol)
    return out[1]
```

```
@property
def nfe(self):
    return self.odefunc.nfe
```

```
@nfe.setter
def nfe(self, value):
    self.odefunc.nfe = value
```

torchdiffeq/examples/odenet mnist.py at master · rtqichen/torchdiffeq, obtained 2024.12.27.

Generative Latent Function Time-series Model

Figure 6: Computation graph of the latent ODE model.

Generative Latent Function Time-series Model with Irregular Time Points

try:

```
for itr in range(1, args.niters + 1):
    optimizer.zero_grad()
    # backward in time to infer q(z 0)
    h = rec.initHidden().to(device)
    for t in reversed(range(samp_trajs.size(1))):
        obs = samp_trajs[:, t, :]
        out, h = rec.forward(obs, h)
    qz0_mean, qz0_logvar = out[:, :latent_dim], out[:, latent_dim:]
    epsilon = torch.randn(qz0_mean.size()).to(device)
    z0 = epsilon * torch.exp(.5 * qz0_logvar) + qz0_mean
    # forward in time and solve ode for reconstructions
    pred z = odeint(func, z0, samp ts).permute(1, 0, 2)
    pred_x = dec(pred_z)
    # compute loss
    noise std = torch.zeros(pred x.size()).to(device) + noise std
    noise_logvar = 2. * torch.log(noise_std_).to(device)
    logpx = log_normal_pdf(
        samp_trajs, pred_x, noise_logvar).sum(-1).sum(-1)
    pz0_mean = pz0_logvar = torch.zeros(z0.size()).to(device)
    analytic kl = normal kl(qz0 mean, qz0 logvar,
                            pz0 mean, pz0 logvar).sum(-1)
    loss = torch.mean(-logpx + analytic_kl, dim=0)
    loss.backward()
    optimizer.step()
    loss_meter.update(loss.item())
```

Generative Latent Function Time-series Model with Irregular Time Points

Ground Truth
 Observation
 Prediction
 Extrapolation

(b) Latent Neural Ordinary Differential Equation

Disccusion

Reconstructing the state trajectory by running the dynamics backwards can introduce extra numerical error if the reconstructed trajectory diverges from the original. This problem can be solved using checkpointing.