fIRAL

MEZAIL S

UUUUUUUUUUUUUUUUU

Evaluating
Robustness of neural networks
with mixed integer programming

Linear Programming

M

—0

da T2 RPoA Aol wE b, R oA gojd WiE ¢, R™oj|A] | g he}
==

Pd Ge R™™" A e RP""of tfste, theo] A3}t A AFAG Yol §F
Lt} @
minimize 1 ¢lp
subjectto (Gm); < h;, i=1,-,m (3.5)
Az=1»

o
1
1o
2
OF
MHA
ot
>|.|I

, SFSot7HH|Of

i)
>
il
oC
1o
40

Integer Programing

Problem definition

Optimization model & €& Bl~(variables)?} & =(integer)2t= HTt=7 0| /& M, O| & integer

program O|2t £ ELC}.

min f(z)
subject to reC where f:R" - R, CCR" and JCI1,...,n
x;cZ,jeJ

et Alof A J 7t CHE 2 BHE SHCHH, pure integer program O| 2t £ECH
J={1,...,n}

ol 20|M =2lxl= f 9F C = 25 convex2tid 7FI3I=E)AL

24-01 Definition - Z & ot HHA x| X3}
(convex-optimization- for—aII Q|thub io)

https://convex-optimization-for-all.github.io/contents/chapter24/2021/03/28/24_01_Definition/

Examples of Integer Programming

Knapsack problem

Hi ‘g 2 (Knapsack problem 2 HiEO| ¥2 4 Q= 27 sHHE|O 910] HiE ool E0{Z item 2]
Z 3717 M=o A= M, Z[CHe| 7FHK](value) & 7HX| = item=& HESIEE &M & F= TEH D
=g A3t 28| 0|C} O] 2= binary variable z 2 E30| 73|, j HM item= MEiZH= X| Of
HX|o 2 25 70 &2 12 22 7HX[A| Lt

max cle

subject to a’x <b

LBjEO,l,j:l,.

cj,a; = A2 j HM item?| 7tX|(value) 2F 3 7|(volume) & LIEHHCY,

24-02 Examples of integer programs - 25 2| 744l

| |

A X|A3} (convex-optimization-for-all.github.io)

https://convex-optimization-for-all.github.io/contents/chapter24/2021/03/28/24_02_Example_of_integer_programs/
https://convex-optimization-for-all.github.io/contents/chapter24/2021/03/28/24_02_Example_of_integer_programs/

Contributions

« We demonstrate that, despite considering the full combinatorial nature of the network, our
verifier can succeed at evaluating the robustness of larger neural networks, including those with
convolutional and residual layers.

« We identify why we can succeed on larger neural networks with hundreds of thousands of units.
First, a large fraction of the ReLUs can be shown to be either always active or always inactive
over the bounded input domain. Second, since the predicted label is determined by the unit in
the final layer with the maximum activation, proving that a unit never has the maximum
activation over all bounded perturbations eliminates it from consideration. We exploit both
phenomena, reducing the overall number of non-linearities considered.

« We determine for the first time the exact adversarial accuracy for MNIST classifiers to
perturbations with bounded I1 norm. We are also able to certify more samples than the state-
of-the-art and find more adversarial examples across MNIST and CIFAR-10 classifiers with
different architectures trained with a variety of robust training procedures.

Definition of Robustness

Evaluating Adversarial Accuracy. Let G() denote the region in the input domain corresponding
to all allowable perturbations of a particular input . In general, perturbed inputs must also remain in
the domain of valid inputs X,,;;4. For example, for normalized images with pixel values ranging
from 0 to 1, Xya1i0 = [0, 1]™. As in Madry et al. (2018), we say that a neural network is robust to
perturbations on x if the predicted probability of the true label A(x) exceeds that of every other label
for all perturbations:

V' € (G(x) N Xyaria) © argmax; (fi(x")) = A(z) (1)
Equivalently, the network is robust to perturbations on x if and only if Equationis infeasible for '
e (G(x) N Xypatid)) A (f () < max x’) (2)

(= € (G(x) tid)) Az) (27) ,uE[l,n]\{}\(:c)}f#()

where f;(-) is the i output of the network. For conciseness, we call = robust with respect to the
network if f(-) is robust to perturbations on x. If z is not robust, we call any 2’ satisfying the
constraints a valid adversarial example to x. The adversarial accuracy of a network is the fraction of
the test set that is robust; the adversarial error is the complement of the adversarial accuracy.

Minimum Adversarial Distortion

Evaluating Mean Minimum Adversarial Distortion. Let d(-,-) denote a distance metric that
measures the perceptual similarity between two input images. The minimum adversarial distortion
under d for input & with true label \(x) corresponds to the solution to the optimization:

min, d(x’,) (3)
subject to argmax, (f;(z")) # A\(x) (4)
If € Xiralid (5)

Formulating Piecewise-Linear Functions in the MILP Framework

Formulating ReLU Let y = max(x.0), and [< 2 < u. There are three possibilities for the phase
of the ReLU. If u < 0, we have y = 0. We say that such a unit is stably inactive. Similarly, if
[> 0, we have y = x. We say that such a unit is stably active. Otherwise, the unit is unstable. For
unstable units, we introduce an indicator decision variable a = 1,>0. As we prove in Appendix A.1,

y = max(x.0) is equivalent to the set of linear and integer constraints in Equation 6.

(y<z—Ill—a)AN(y>x)AN(y<u-a)AN(y>0)A(a€{0,1}) (6)
Formulating the Maximum Function Lety = max(zy,79,...,7,),and [; < x; < u;,
Proposition 1. Let l,,q4 = max(ly,la, ...,). We can eliminate from consideration all x; where

Ui < lmaz. Since we know that y > lyae > u; > 5.

We introduce an indicator decision variable a; for each of our input variables, where a; = 1 — y =

;. Furthermore, we deﬁne. Umaz,—i 2 Mmax;—+; (-'u,j). .As we prove n Append.ix A..Z, the cpnstraint
y = max(ry, T, ..., T,y) is equivalent to the set of linear and integer constraints in Equation 7.

m

A (5 <2+ (1= a3) (Umaz,—i — i)) A (y > 7)) A (211 a; = 1) Ala; €4{0.1}) (1)

=1

Progressive Bounds Tightening

« Tight bounds strengthen the problem
formulation and thus improve solve times.

* |f we can prove that the phase of a RelLU is
stable, we can avoid introducing a binary
variable.

Progressive Bounds Tightening

GETBOUNDSFORRELU(z, fs)

1 > fsare the procedures to determine bounds, sorted in increasing computational complexity.

2 lpest = —00; Upest = 00 > initialize best known upper and lower bounds on x

3 for fin fs: > carrying out progressive bounds tightening

4 do u = f(x, boundlype = upper); upess = MiN(Upest, U)

5 if Upes; < 0 return (lpegs. Upest) > Early return: < upeq; < 0: thus max(x,0) = 0.
6 [= f(x,boundType = lower); lyese = Max(lpess,)

7 if [pese = 0 return (lpeq, Upesy) > Early return: o > [, > 0; thus max(z,0) = o
8 return (lp.s, Upes:) > a could be either positive or negative.

The process of progressive bounds tightening is naturally extensible to more procedures. Kolter &
Wong (2017); Wong et al. (2018); Dvijotham et al. (2018); Weng et al. (2018) each discuss procedures
to determine bounds with computational complexity and tightness intermediate between 1A and LP.
Using one of these procedures in addition to 1A and LP has the potential to further reduce build times.

Progressive Bounds Tightening

GETBOUNDSFORMAX(zs, fs)

I > fs are the procedures to determine bounds, sorted in increasing computational complexity.
2 dy={r:—occforrin zs}

3 d,={r:ocoforzin xs}

4 > initialize dictionaries containing best known upper and lower bounds on xs

S5 lpar = —00 > e 18 the maximum known lower bound on any of the s

6 a={rs}

7 > aisasetof active elements in xs that can still potentially take on the maximum value.
8 for fin fs: > carrying out progressive bounds tightening

9 do for = in xs:
10 if dy 7] < lmas
11 then a.remove(xr) > x cannot take on the maximum value
12 else u = f(x, boundType = upper)
13 d,[r] = min(d,[x], u)
14 [= f(x, boundT'ype = lower)
15 dy[x] = max(d;[x]. 1)
16 lmaz = Max(lmaz.)

17 return (a.d;.d,)

Experiment

 MLP A: 1 hidden layer, 500 perceptrons per
hidden layer.

« MLP B: 2 hidden layer, 200 perceptrons per
hidden layer.

« CNN A: 2 convolutional layers, which have 16
and 32 filters, respectively.

 CNN B: 4 convolutional layers, which have 32,
32, 64, 64 filters, respectively.

« LP_d: the dual of a linear program
« SDP_d: the dual of a semidefinite relaxation

» ADV: Adversarial examples generated via
Projected Gradient Descent (PGD)

Performance Comparisons: MILP

When removing progressive tightening, we directly use LP rather than doing IA first. When removing
using restricted input domain, we determine bounds under the assumption that our perturbed input
could be anywhere in the full input domain AX',,;;4, imposing the constraint " € G(x) only after all
bounds are determined. Finally, when removing using asymmetric bounds, we replace [and w in
Equation 6 with —M and M respectively, where M = max(—I, u), as is done in Cheng et al. (2017);
Dutta et al. (2018); Lomuscio & Maganti (2017). We carry out experiments on an MNIST classifier;
results are reported in Table 1.

Table 1: Results of ablation testing on our verifier, where each test removes a single optimization. The
task was to determine the adversarial accuracy of the MNIST classifier LP3-CNN, to perturbations
with [norm-bound € = 0.1. Build time refers to time used to determine bounds, while solve
time refers to time used to solve the main MILP problem in Equation 2 once all bounds have been
determined. During solve time, we solve a linear program for each of the nodes explored in the MILP
search tree.

"We exclude the initial build time required (3593s) to determine reusable bounds.

Ontimizati Mean Time / s Nodes Explored Fraction
ptimization Removed Timed O
Build Solve Total Mean Median ' Mmed YUl
(Control) 344 0.08 3.52 1.91 00
Progressive tightening 7.66 0.11 1.77 1.91 00
Using restricted input domain' 1.49 5647 5796 649.63 65 0.0047

Using asymmetric bounds 4465.11 133.03 4598.15 1279.06 105 0.0300

Performance Comparisons: Complete & Incomplete Verifiers

Verification Times, vis-a-vis the state-of-the-art SMT-based complete verifier Reluplex. Fig-
ure[I|presents average verification times per sample. All solves for our method were run to completion.
On the /o, norm, we improve on the speed of Reluplex by two to three orders of magnitude.

Norm = /. Norm = |5 Norm = |}
X
10% 1 1
i
-;J. 10° § 1 1 Method
% 102 1 " | A : A » Exact: Reluplex
e 10° 1 ; A] Exact: Ours
o * a a Lower Bound: LP-Full
?)‘ 107 3 3 A - # - a Lower Bound: LP
£ 10 o A & 1] » Lower Bound: Fast-Lin
= Lower Bound: Fast-Lip
1072 1 . 1 1 .
- A A
1073 T T T T T T
MLP-2x[20] MLP-3x[20] MLP-2x[20] MLP-3x[20] MLP-2x{20] MLP-3x[20]
Network Network Network

Figure 1: Average times for determining bounds on or exact values of minimum targeted adversarial
distortion for MNIST test samples. We improve on the speed of the state-of-the-art complete verifier
Reluplex by two to three orders of magnitude. Results for methods other than ours are from Weng|

et al. (2018

); results for Re luplex were only available in

Weng et al.

(

2018

) for the [, norm.

Determining Adversarial Accuracy

Table 2: Adversarial accuracy of MNIST and CIFAR-10 classifiers to perturbations with /., norn
bound €. In every case, we improve on both 1) the lower bound on the adversarial error, found b
PGD, and 2) the previous state-of-the-art (SOA) for the upper bound, g

cenerated by the followin

methods: ' Kolter & Wong

(2017), I Dvijotham et al. (2018), 3 Raghunathan et al.

2018). Fc

classifiers marked with a -/ we have a guarantee of robustness or a Vahd adversarial example fc
every test sample. Gaps between our bounds correspond to cases where the solver reached the tim
limit for some samples. Solve statistics on nodes explored are in Appendix

Test Certified Bounds on Adversarial Error Mean

Dataset Network ¢ Error Lower Bound Upper Bound No T}me
PGD Ours SOA Ours Gap? '°

MNIST LP4-CNNg 0.1 1.19% 2.62% 273% 4.45%"1 2.74% 46.33

LP4-CNN, 0.1 1.89% 4.11% 4.38% 5.82%"! 4.38% 3.52

Adv-CNN, 0.1 0.96% 4.10% 4.21% — 7.21% 135.74

Adv-MLPg; 0.1 4.02% 9.03% 9.74% 15.41%2 9749 3.69

SDPg-MLP, 0.1 4.18% 11.51% 14.36% 34.77%5! 30.81% 312.43

LP4-CNN, 0.2 4.23% 9.54% 10.68% 17.50%"! 10.68% v 7.32

LP4-CNNg 0.3 11.16% 19.70% 24.12% 41.98%" 24.19% 98.79

LPg-CNN, 0.3 11.40% 22.70% 25.79% 35.03%!Y1 25.79% v 5.13

LP4-CNN, 0.4 26.13% 39.22% 48.98% 62.49%! 48.98% 5.07

CIFAR-10 LPg-CNN, 52 39.14% 48.23% 49.84% 53.59%!'1 50.20% 22.41

LP4-RES 8 72.93% 76.52% 77.29% 78.52%!"! 77.60% 15.23

f:!

25°F

Determinants of Verification Time

Table 3: Determinants of verification time: mean verification time is 1) inversely correlated to the
number of labels that can be eliminated from consideration and 2) correlated to the number of ReLLUs
that are not provably stable. Results are for e = 0.1 on MNIST; results for other networks are in

Appendix [F.2
Mean Number Number of RelLUs
. . of Labels : ,
Network Time/s Eliminated [[}tl)lssiilt;ll}é Provably Stable Total
€ Active [nactive
LP4-CNNg 46.33 6.87 311.96 30175.65 17576.39 48064
LP4-CNN, 3.52 6.57 121.18 1552.52 3130.30 4804
Adv-CNN, 135.74 3.14 545.90 3383.30 874.80 4804
Adv-MLPg 3.69 4.77 55.21 87.31 257.48 400

SDP4-MLP, 312.43 0.00 297.66 73.85 128.50 500

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16

